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Rotary dynamics of solitons in radially periodic optical
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We investigate the dynamics of strongly localized solitons trapped in remote troughs of radially periodic
lattices with Kerr-type self-focusing nonlinearity. The rotary motion of solitons is found to be more stable
for larger nonlinear wavenumbers, lower rotating velocity, and shorter radius of the trapping troughs.
When the lattice is shrunk or expanded upon propagation, the solitons can be trapped in the original
trough and move outward or inward, with their rotating linear velocity inversely proportional to the radius
of the trapping troughs.
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Solitons in nonlinear systems play a crucial role in many
branches of nonlinear science, such as biology, solid state
physics, Bose-Einstein condensates (BECs), and nonlin-
ear optics[1−6]. In Kerr medium with a purely cubic non-
linear response, solitons formally exist, but in two- and
three-dimensional (2D and 3D) cases, they are unstable
against the spatiotemporal collapse induced by the com-
bined effect of nonlinearity and diffraction (anomalous
dispersion)[6]. One way to prevent collapse is to change
the nonlinearity by considering media with quadratic
(second-harmonic generating) nonlinearity or saturable
nonlinearity. Another way is to introduce transverse
modulation of potentials (optical lattices). In recent
years, many interests have been directed to the latter
case, and many properties of solitons that cannot be ob-
served in bulk uniform nonlinear media have been dis-
covered in transverse modulated media.

In the 2D domain, solitons have been investigated in
harmonic lattices[7,8], hexagon lattices[9], axis-symmetric
lattices[10−16], and other kinds of lattices[17−19]. Re-
cently, axis-symmetric lattices have been the focus of
attention, where solitons are trapped either at the cen-
ter or in the remote troughs of the lattices. Different
forms of solitons have been examined, such as funda-
mental solitons[10−12], dipole solitons[13], ring solitons,
and necklace solitons[14]. An interesting phenomenon
takes place in 2D Bessel lattices or radially periodic lat-
tices. When fundamental solitons are probed into remote
troughs, they take a rotary motion[10−12,15]. However,
recent achievements in this field usually employ a funda-
mental soliton as the probe beam, which is not formally
the exact solution of solitons trapped in remote troughs.
Solitons that are trapped in remote troughs are deter-
mined by the local distribution of the refractive index and
have different profiles from fundamental solitons. Their
corresponding rotary dynamics has never been reported
before.

In this letter, we begin our research with the 2D Gross-
Pitaevskii equation (GPE)[15] with radially periodic po-
tential. The profiles of solitons trapped in remote troughs
of stationary lattices are obtained by Fourier iteration
method[8]. Using the solved soliton profiles as input sig-

nals, their propagation dynamics are numerically sim-
ulated by the split-step Fourier transformation method
(SSFTM). In stationary lattices, the rotating motion of
a soliton is affected by the potential strength, nonlinear
wavenumber, rotating velocity, and radius of the troughs.
In particular, we also investigate the rotary motion of a
soliton in dynamic lattices, which are shrunk or expanded
upon propagation. In our simulation, we use a rather sta-
ble soliton profile as input signal and find that solitons
are trapped in the original troughs and rotate around the
axis in a spiral motion upon propagation. The rotating
linear velocity is inversely proportional to the radius of
the troughs, which is determined by the two conserved
quantities of the GPE.

The model follows standard GPE in its normalized
form[15]
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u + V (x, y)u + |u|2u = 0, (1)

written for the wave function u in Cartesian coordinates
(x, y). The equation can describe the evolution of matter-
wave solitons created in BECs with respect to time, and
V (x, y) is the corresponding optical lattice potential. The
dimensionless variables are chosen such that u is mea-
sured in units of the recoil energy Er = h̄2k2/2m, where
k = π/d, and d is a constant representing the scale of
the lattices. The temporal coordinate t and spatial co-
ordinates (x, y) are measured in units of Er/h̄ and d/π,
respectively. In our simulation, we consider periodic po-
tential in the axial direction as

V (r) = ε cos(2πr/T ), (2)

where ε is the modulation depth of the optical lattice po-
tential, and T = 2π is the dimensionless period along the
radial direction. The solitons trapped in the lattices can
be written as u(x, y, t) = U(x, y)ejµt, where µ is the non-
linear wavenumber of the solitons and U(x, y) denotes
the soliton profile. We use the Fourier iteration scheme
used in Ref. [6], choose a Gaussian-like initial condition,
and let the maximum of the trial function centered at
the center of nr be the lattice trough at points (nrT, 0).
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After iteration, the profiles of the solitons can be found
for given nonlinear wavenumbers that are trapped in the
chosen troughs.

Equation (1) conserves two quantities, the power

P (µ) =

∫ +∞

−∞

∫ +∞

−∞

|U |2dxdy (3)

and the angular momentum

L =
1

2i

∫∫

[(xi + yj) × (U∗∇U − U∇U∗)] dxdy. (4)

In what follows, we show that the above two conser-
vative quantities are important for the rotary motion
of solitons in radially periodic lattices, especially in dy-
namic lattices that are to be introduced in the following.

Without loss of validity and generality, we set k = 2
and find solitons that are trapped in the 5th trough of
the lattice with different modulation depths. The cor-
responding lattice profile is shown in Fig. 1(a), with
radial period T = 2π/k = π. The dependence of soli-
ton power on the nonlinear wavenumber is depicted in
Fig. 1(b) for ε = 1, 2, and 3, respectively. Two typical
soliton profiles are shown in Figs. 1(c) and (d) with
µ = 0.6 and 3, as marked by circles in Fig. 1(b). Similar
solitons that are trapped in the center and in remote
troughs exist when µ is larger than a minimum value,
which is larger for a deeper modulation of the potential
(larger ε) as shown in Fig. 1(b). When µ is smaller, the
corresponding solitons spread along the trough at first,
and then into the nearby troughs, as shown in Fig. 1(c)
as an example. When µ >> ε, the solitons are strongly
confined in the trough and slightly perturbed by the local

Fig. 1. (a) Radially periodic lattice with T = π; (b) soliton
power P versus nonlinear wavenumber µ for solitons trapped
in the 5th trough of a radially periodic lattice with ε = 1,
2, and 3; profile of solitons with nonlinear wavenumbers (c)
µ = 0.6 and (d) µ = 3, respectively, trapped in the 5th trough
of a radially periodic lattice with ε = 2.

refractive index potential, as seen in Fig. 1(d). Their
power increases asymptotically to 11.7, which is constant
in a bulk medium with Kerr-type nonlinearity[2].

The linear stability of solitons is determined by the
well-known Vakhitov-Kolokolov (VK) criterion. Figure
1(b) shows that dP/dµ > 0 is satisfied in most of the
existence region for a small ε and in the entire existence
region for a large ε. We also simulate the propagation
of solitons perturbed by random noise using the SSFTM
method and find that solitons are stable against linear
perturbations, thereby proving the validity of the VK
criterion.

A notable feature of axis-symmetric lattices is the ro-
tation of solitons around certain lattice troughs[10−12,15].
To investigate this, we use the following expression

U0(x, y) = U(x, y) exp(ivy), (5)

where U(x, y) is the soliton profile solved by the Fourier
iteration method, and v is the initial velocity given to
the soliton, as initial condition. The propagation of the
beam is simulated using the SSFTM method. We define
the percentage of soliton power that falls in the trapping
trough by

η =
Pnr

P
=

∫ (nr+1/2)T

(nr−1/2)T

|U(x, y)|2dxdy

∫ +∞

−∞

|U(x, y)|2dxdy

. (6)

The solitons become more confined in the trapping
trough as µ increases, and other parameters are set sta-
tionary. The percentage of energy trapped in the original
trough versus propagation distance is shown in Fig. 2(a)
for different nonlinear wavenumbers. The solitons can
travel around the lattice troughs with nearly no loss of
energy when the nonlinear wavenumber is larger than
1.2. With µ decreasing, most of the energy radiates
to other troughs when the solitons circulate around the
trough. We also investigate the propagation of the soli-
tons around troughs with different velocities. We find
that higher velocities may cause some of the energy to
tunnel into outer troughs, and the corresponding rotary
motion is rather more unstable, as shown in Fig. 2(b).
When driven by the same linear velocity, the solitons
trapped in the second trough radiate most of their en-
ergy when t > 30, as shown in Fig. 2(c). Meanwhile,
those solitons trapped in the 4th trough retain more than
98% of their energy as long as t = 100. Thus, soliton
rotary motion in stationary lattices is more stable for
larger nonlinear wavenumbers, lower initial linear veloc-
ities, and shorter distances away from the center of the
lattices.

To further investigate the guiding properties of radially
periodic lattices, we consider the soliton with nonlinear
wavenumber µ = 3 and trapped in the 5th trough; we
let the optical lattice potential vary with time in a linear
motion as

V (r, t) = ε cos(kr + αt). (7)

The lattices shrink or expand for different signs of α.
In Figs. 3(a) and (b), we demonstrate the track of the
soliton in the transverse plane for α = ±0.1π. The
pictures are taken in a sequence of snapshots with steps
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Fig. 2. (a) Percentage of energy trapped in the original
trough η versus time for different µ values, the other param-
eters are nr = 5, ε = 2, and v = 1; (b) percentage of energy
trapped in the original trough versus time for different veloc-
ities, the other parameters are nr = 5, ε = 2, and µ = 0.8;
(c) percentage of energy trapped in different troughs versus
time, the other parameters are ε = 2, v = 1, and µ = 1.4.

Fig. 3. (a) Soliton propagation for α = +0.1π, v = 1, and
µ = 3, illustrated by a sequence of snapshots with dt = 4; (b)
soliton propagation for α = −0.1π, v = 1, µ = 3, illustrated
by a sequence of snapshots with dt = 1.6; (c) soliton profile
after traveling along the propagating direction at t = 160; the
parameters are the same as those in (b). White arrows in (a)
and (b) mark the rotary direction of the solitons.

dt = 4 and 1.6. The solitons take a spiral motion. Their
linear velocity also changes while propagating. It de-
creases when the solitons are moving outward but in-
creases when they are moving inward, corresponding to
different signs of α. We find that the change in soliton
rotating linear velocity can be interpreted by the admis-
sion of GPE of the conserved angular momentum L as

shown in Eq. (4).
Assuming that the soliton is far from the lattice center

and is highly confined in local troughs, we can use the
following Gaussian ansatz for a soliton trapped in the
point (nrT, 0):

U(x, y) = A exp

[

−
(x − r0)

2 + y2

ω2
0

]

ejvy, (8)

where r0 = nrT, and A and ω0 are the two constants that
determine the amplitude and size of the soliton, respec-
tively. We substitute the above expression into Eq. (4)
and obtain

U∗∇U =A2
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0
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−
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]

× exp
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0

]

. (9)

Then the conserved angular momentum only has compo-
nent along the temporal coordinate, and it reads

Lt =

∫∫

xv exp

[

−
2(x − r0)

2 + 2y2

ω2
0

]

dxdy. (10)

The right hand side of Eq. (10) is reduced to Lt ≈ r0vP
under the approximation that r0 >> T and ω0. Notably,
the above conserved angular momentum is an inherent
attribute of the GPE and is different from the angular
momentum of solitons. P and L are the two conserved
quantities of GPE, so the above expression shows that the
linear velocity of solitons is inversely proportional to the
radius of the trapping troughs: solitons move outward
when the lattice is tuned, and they expand upon propa-
gation (α > 0), so their linear velocity has to decrease in
order to conserve the angular momentum. When α < 0,
the solitons move inward, and their velocity increases.

When the solitons move too close to the center, their
linear velocity becomes so high that they cannot maintain
their shapes and gradually radiate some of their energy.
A typical example is shown in Fig. 3(c), wherein the
soliton eventually disappears after propagating as far as
t = 160. This result is similar with the case shown in
Fig. 2(b) for higher linear velocities. The only difference
is that the linear velocity increases in the dynamic lat-
tices rather than in an initially imposed condition.

In conclusion, we investigate the rotary dynamics of
matter-wave solitons in BECs with a radially periodic op-
tical lattice potential. The profiles of the solitons trapped
in certain troughs are found. Both stationary and dy-
namic lattices are considered. When set in rotary motion,
the solitons may be trapped in the troughs or radiate
some of their energy to other troughs. Larger nonlin-
ear wavenumbers or smaller velocities can help stabilize
the rotation. Further, the solitons are more likely to be
trapped in the outer troughs of radially periodic lattices.
When the potential expands or shrinks with time, the
solitons are trapped in the original trough and take a
spiral motion, with their linear velocity decreasing or in-
creasing at the same time, which is inversely proportional
to the radius of the trapping troughs. Our findings en-
rich current knowledge on the rotary motion of solitons
in radially periodic lattices and may pave the way for
the future applications of spatial solitons in 2D regimes
in both nonlinear optics and BECs.
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